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Abstract:  Heat transfer behavior of unsteady flow of squeezing nanofluid (Copper+water) between two 
parallel plates is investigated. By using the appropriate transformation for the velocity and temperature, the 
basic equations governing the flow and heat transfer were reduced to a set of ordinary differential equations. 
These equations subjected to the associated boundary conditions were solved analytically using Homotopy 
Perturbation Method and numerically using Runge-Kutta-Fehlberg method with shooting technique. Effects 
on the behavior of velocity and temperature for various values of relevant parameters are illustrated 
graphically. The skin-friction coefficient, heat transfer and Nusselt number rate are also tabulated for various 
governing parameters. The results indicate that, for nanofluid flow, the rates of heat transfer and velocity had 
direct relationship with squeeze number and nanoparticle volume fraction they are also a decreasing function 
of those parameters. 
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1. Introduction 

The word nanofluid represents the fluid in which 
particles of size with order of nanometer (diameter 
< 100 nm) are mixed in the base fluid. The 
nanoparticles used in nanofluids are generally 
made of metals (Al, Cu), oxides (Al2O3, CuO, 
TiO2, and SiO2), carbides (SiC), nitrides (AlN, 
SiN), and nonmetal (graphite, carbon nanotubes) 
and the base fluid is usually a conductive fluid, 
such as water or ethylene glycol. Other base fluids 
are toluene, oil, other lubricants, biofluids, and 
polymer solution. Nanoparticles are present up to 
5% volume fraction in nanofluids.The 
conventional heat transfer fluids are poor 
conductors of heat. Nanofluids make an edge over 
them because they have high heat transfer 
capability. Since these heating/cooling fluids play 
a vital role in the development of energy efficient 
heat transfer equipment for energy supply, to raise 
the thermal conductivity of these fluids, nanosized 
conducting metal particles are added to them. 

Therefore, their proper understanding is a must to 
use them efficiently in modern industry. 
Applications of nanofluids include 
microelectronics, fuel cells, and pharmaceutical 
processes.  
     Choi and Eastman [1] were the first to propose 
the term nanofluid that represents the fluid in 
which nanoscale particles are suspended in the 
base fluid with low thermal conductivity such as 
water, ethylene glycol, and oil. In recent years, 
many researchers have studied and reported 
nanofluid technology experimentally or 
numerically in the presence of heat transfer.  
     Heat transfer of a nanofluid flow which is 
squeezed between parallel plates was investigated 
analytically using Homotopy perturbation method 
(HPM) by   Sheikholeslami and Ganji [2]. They 
reported that Nusselt number has direct 
relationship with nanoparticle volume fraction, the 
squeeze number and Eckert number when two 
plates are separated but it has reverse relationship 
with the squeeze number when two plates are 
squeezed. 

Most of engineering problems, especially some 
heat transfer equations are nonlinear, therefore 
some of them are solved using numerical solution 
and some are solved using the different analytic 
method, such as perturbation method (PM), 

homotopy perturbation method (HPM), variational 
iteration method (VIM). Therefore, many different 
methods have recently introduced some ways to 
eliminate the small parameter. One of the semi-
exact methods which does not need small 
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parameters is the HPM. The homotopy 
perturbation method proposed and improved by 
He [3]. The method yields a very rapid 
convergence of the solution series in the most 
cases. The HPM proved its capability to solve a 
large class of nonlinear problems efficiently, 
accurately and easily with approximations 
convergency very rapidly to solution. Usually, few 
iterations lead to high accuracy solution. This 
method is employed for many researches in 
engineering sciences.         HPM was used for 
solving meany problems such as : nonlinear MHD 
Jeffery Hamel problem by Moghimi et al. [4].  
Mustafa et al. [5] analyzed the effect of squeezing 
nanofluid flow between parallel plates. 
Comprehensive account of the use of the HPM 
successfully to solve problems in fluid mechanics, 
please see [6, 7]. 
     The main objective of this present study is to 
investigate nanofluid flow and heat transfer 
between two parallel flat plates without presence 
of magnetic field. In this study, we have applied 
Runge-Kutta- Fehlberg fourth-fifth-order method 
with shooting technique (RKF45) and homotopy 
perturbation method (HPM), to find the solution of 
nonlinear differential equations. The effects of 

governing parameters such as squeeze number, 
and nanoparticle volume fraction on velocity, and 
temperature, aswell as on skin-friction coefficient, 
Nusselt are investigated. 
 

2. Mathematical Formulation 

We consider an unsteady two-dimensional flow to 
observe heat andmass transfer of a squeezing 
nanofluid in the middle of two parallel plates 
extended infinitely and implanted in a system 
occupied with nanofluid (water as a base fluid) 
and (copper as a nanoparticle). The 
thermophysical properties of the nanofluids are 
given in Table 1. The distance between two plates 
is 𝑦 = 𝑙√1 −  𝑡 = ℎ(𝑡) where 𝑙 is the initial 
position                                       (at time 𝑡 = 0).
Flow is incompressible with no chemical reaction 
in system. The graphical model support to the 
present study has been given in Figure 1.  
 

 
 
 
 

 
 

Figure 1 : Geometry of present work. 

Table 1 : Thermophysical properties of pure water and nanoparticles. 
 

 

 

 

 

 

 

 

 

  (Kg / m3) Cp (J / Kg) K (W / mK)  (S m-1) 

Copper (Cu) 
Pure water (H2O) 

8933 
997.1 

385 
4179 

401 
0.613 

5.96 * 107 

0.05 
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The governing equations representing flow are as 

follows : 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0    (1)  

𝜌𝑛𝑓 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
)

= −
𝜕𝑃

𝜕𝑥
+ 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) 

(2)  

𝜌𝑛𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
)

= −
𝜕𝑃

𝜕𝑦
+ 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) 

(3)  

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) (4)  

𝑢
𝜕ꞷ

𝜕𝑥
+ 𝑣

𝜕ꞷ

𝜕𝑦
=


𝑛𝑓

𝜌𝑛𝑓
(

𝜕2ꞷ

𝜕𝑥2
+

𝜕2ꞷ

𝜕𝑦2
) (5)  

equation (5) is called the vorticity equation is 

obtained by doing : 
𝜕(𝟑)

𝜕𝑥
−

𝜕(𝟐)

𝜕𝑦
 with ꞷ =

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
.  

where 𝑢 and 𝑣 are the velocity components in the 
x and y directions, respectively, 𝜌𝑛𝑓 is the 
effective density of the nanofluid, 

𝑛𝑓
 is the 

effective dynamic viscosity of the nanofluid, 
(𝜌𝑐𝑝)

𝑛𝑓
 is the heat capacity of the nanofluid and 

𝑘𝑛𝑓is the thermal conductivity of the nanofluid, 
are given as :  

𝜌𝑛𝑓  =  (1 − ɸ)𝜌𝑓  +  ɸ𝜌𝑝 (6)  

(𝜌𝐶𝑝)𝑛𝑓    =  (1 − ɸ)(𝜌𝐶𝑝)𝑓   +  ɸ(𝜌𝐶𝑝)𝑝 (7)  

µ𝑛𝑓 =
µ𝑓

(1 − ɸ)2.5
 (8)  

𝐾𝑛𝑓 =
𝐾𝑠 + 2𝐾𝑓 − 2ɸ(𝐾𝑓 − 𝐾𝑠)

𝐾𝑠 + 2𝐾𝑓 + 2ɸ(𝐾𝑓 − 𝐾𝑠)
𝐾𝑓 (9)  

The associated boundary conditions for the time 

dependent squeezing flow are as follows : 

𝑢 = 0 , 𝑣 = 0 , 𝑇 = 𝑇1      en      𝑦 = 0 (10)  

𝑢 = 0 , 𝑣 =
𝑑ℎ

𝑑𝑡
 , 𝑇 = 𝑇2      en      𝑦 = ℎ(𝑡) (11)  

In the Eq. (11), 𝑣 =
𝑑ℎ

𝑑𝑡
 indicate the velocity with 

which upper plate is moving towards or away 

from the lower plate which is kept at a distance 

𝑦 =  0 from the upper plate at 𝑦 =  ℎ (𝑡). 

Further, the value of the 𝑣 is exam as [
−𝑙

2(1−𝑡)
1
2

]. 

However, Eqs. (4)–(5) along with conditions (10) 
and (11) governing the nanofluid squeezing flow 
are coupled highly nonlinear in nature and are not 
amenable to any analytical methods. Hence, in the 
system of partial differential equations, Eqs. (4)–
(5)  are reduced to ordinary differential equations 
by using the following similarity transf 
ormations :  

ƞ =
𝑦

𝑙(1 − 𝑡)
1

2

=
𝑦

ℎ(𝑡)
 (12)  

𝑢 =
𝑥

2(1 − 𝑡)
𝑓′(ƞ) 

(13)  

𝑣 =
−𝑙

2(1 − 𝑡)
1

2

𝑓(ƞ) 
(14)  

𝛩 =
𝑇 − 𝑇2 

𝑇1 − 𝑇2
 

(15)  

and substituting Eq. (12) in Eqs. (5) and (6), we 

obtain the reduced governing equations : 

 The nonlinear fourth-order ordinary 

differential equation for the momentum 

equation : 

 
 

𝑓′′′′ − 𝑆
𝐴1

𝐴2

(3𝑓′′ + ƞ𝑓′′′ + 𝑓′𝑓′′ − 𝑓𝑓′′′) = 0 (16)  
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 The second order differential equation for 

the energy equation : 

where 𝐴1, 𝐴2 and 𝐴3are dimensionless constants 

defined as follows : 

𝐴1 =
𝜌𝑛𝑓

𝜌𝑓
    (18)  

𝐴2 =
𝜇𝑛𝑓

𝜇𝑓
 (19)  

𝐴3 =
𝐾𝑛𝑓

𝐾𝑓
 (20)  

𝐴4 =
(𝜌𝑐𝑝)

𝑛𝑓

(𝜌𝑐𝑝)
𝑓

 (21)  

The boundary conditions (10) in the terms of 

similarity variables (11) become : 

𝑓′(0) = 0 , 𝑓(0) = 0 , 𝛩 = 1     𝑎𝑡      ƞ = 0 (22)  

𝑓′(1) = 0 , 𝑓(1) = 1 , 𝛩 = 0     𝑎𝑡      ƞ = 1 (23)  

where 𝑆 =
𝑙2

2ʋ𝑓
 is the squeeze number,                

 𝑃𝑟 =
(𝜌𝐶𝑝)𝑓

𝐾𝑓
ʋ𝑓 is the Prandtl number. 

The physical quantities of interest are the skin-

friction coefficient 𝐶𝑓, the Nusselt number 𝑁𝑢, 

defined as : 

𝑐𝑓 =
𝜏𝑤

𝜌𝑛𝑓ʋ𝑤
 (24)  

𝑁𝑢 =
𝑙𝑞𝑤

𝑘𝑓(𝑇1 − 𝑇2)
 (25)  

Where : 

𝜏𝑤 = 
𝑛𝑓

(
𝜕𝑢

𝜕𝑦
)

𝑦=0

 (26)  

𝑞𝑤 = −𝑘𝑛𝑓

𝜕𝑇

𝜕𝑦
)

𝑦=0

 (27)  

Using (7) and (11) in (10),we get : 

𝐶𝑓
∗ =

𝑥2

𝑙2
(1 − 𝑡) 𝑅𝑒𝑥

 𝐶𝑓 =
𝑓′′(0)

(1 − ɸ)2.5𝐴1
 (28)  

𝑁𝑢𝑥
∗ = √1 − 𝑡𝑁𝑢𝑥

= −𝐴3𝛩′(0) (29)  

Where 𝑅𝑒𝑥
=

 𝑙5

2𝑥3(1−𝑡)
1
2ʋ𝑓

 the local Reynolds 

number. 
 
 
 
 
 

3. Basic Idea of the Homotopy 

Perturbation Method 

To illustrate the basic ideas of this method, we 

consider the following equation : 

𝐴( 𝑢 ) −  𝑓 (𝑟 ) =  0 ,           𝑟 ∈  𝛺      (30)  

with the boundary condition of : 

𝐵 (𝑢,
𝜕𝑈

𝜕𝑛
) =  0   , 𝑟 ∈  𝛤      (31)  

 
where 𝐴 is a general differential operator, 𝐵 a 
boundary operator, 𝑓 (𝑟) a known analytical 
function and 𝛤 is the boundary of the domain 𝛺. 
𝐴 can be divided into two parts which are 𝐿 and 𝑁, 
where 𝐿 is linear and N is nonlinear. Eq. (16) can 
therefore be rewritten as follows : 

𝐿 (𝑢) +  𝑁 (𝑢) −  𝑓 (𝑟) =  0       (32)  

Homotopy perturbation structure is shown as 

follows : 

𝐻(𝑣, 𝑝) = (1 −  𝑝)[𝐿(𝑣) −  𝐿(𝑢0)] + 𝑝[𝐿(𝑣)
+ 𝑁(𝑣) − 𝑓(𝑟)]  =  0 

(33)  

Where : 

𝑣(𝑟, 𝑝): 𝛺 × [0,1] → 𝑅 (34)  

In Eq. (22), p  [0,1] is an embedding parameter 
and 0 u is the first approximation that satisfies the 
boundary condition. We can assume that the 
solution of Eq. (21) can be written as a power 
series in p, as following : 

𝛩′′ + 𝑆𝑃𝑟
𝐴4

𝐴3

(𝑓𝛩′ − ƞ𝛩′) = 0 (17)  
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𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + 𝑝3𝑣3 + ⋯ (35)  

and the best approximation for solution is : 

𝑢 = 𝑙𝑖𝑚
𝑝→1

𝑣  =  𝑣0 +  𝑣1 +  𝑣2 + ⋯ (36)  

4. Implementation of the method 

According to the so-called homotopy-perturbation 
method (HPM), we construct a homotopy suppose 
the solution of Eq. (17) has the form :   

(1 − 𝑝)[𝑓′′′′ − 𝑓0
′′′′(0)]

+ 𝑝[𝑓′′′′ + 𝑆 𝐴1(1

− ɸ)2.5[3𝑓′′ + ƞ𝑓′′′ + 𝑓′𝑓′′

− 𝑓𝑓′′′]] = 0 

(37)  

(1 − 𝑝)[𝛩′′ − 𝛩0
′′(0)]

+ 𝑝 {𝛩′′

+ 𝑆 𝑃𝑟
𝐴2

𝐴3

[𝑓𝛩′ − ƞ𝛩′]} = 0 

(38)  

We consider 𝑓 and  as follows : 

𝑓(ƞ) = 𝑓0(ƞ) + 𝑓1(ƞ) + 𝑓2(ƞ) + 𝑓3(ƞ) + ⋯  

= ∑ 𝑓𝑖(ƞ)

𝑁

𝑖=0

    
(39)  

𝜃(ƞ) = 𝜃0(ƞ) + 𝜃1(ƞ) + 𝜃2(ƞ) + 𝜃3(ƞ) + ⋯  

= ∑ 𝜃𝑖(ƞ)

𝑁

𝑖=0

 

(40)  

with substituting 𝑓 , 𝜃 from equations (20 - 21) 

into equations (18-19) and some simplification 

and rearranging based on powers of 𝑝 – terms, we 

have : 

 

p0 : 

f iv 0, 

𝜃0
′′ = 0, 

(41)  

 

And boundary conditions are : 

𝑓(0) = 0,𝑓′(0) = 0,𝑓(1) = 1,  𝑓′(1) = 0 ,  

𝜃(0) = 1 et 𝜃(1) = 0 

 

(42)  

 

P1 : 

𝑓1
𝑖𝑣 − 1.102087119𝑆(ƞ𝑓0

′′′ + 3𝑓0
′′ + 𝑓0

′𝑓0
′′

− 𝑓0𝑓0
′′′) = 0 

𝛩1
′′ + 0.9201899729𝑃𝑟𝑆(𝛩0

′ 𝑓0 − ƞ𝛩0
′ ) = 0 

 

(43)  

And boundary conditions are : 

𝑓(0) = 0,𝑓′(0) = 0,𝑓(1) = 0, 𝑓′(1) = 0 ,  

𝜃(0) = 0 et 𝜃(1) = 0 
 

(44)  

Solving equations (22) and (24) with boundary 

conditions, we have :  

𝑓0 = −2ƞ3 + 3ƞ2 𝛩0 = −ƞ + 1 

𝑓1 =
254789641

45623178
𝑆 (

1

875
ƞ7 −

1

68
ƞ6

−
1

97
ƞ5 +

1

74
ƞ4)

−
45879621

5879641
ƞ3𝑆

+
57896412

25896413
ƞ2𝑆 

𝜃1 = −
8569742301

15419872
𝑆𝑃𝑟 (

1

45
ƞ5 −

1

82
ƞ4

+
1

78
ƞ3)

+
254789620

15478963
𝑆𝑃𝑟ƞ 

 

(45)  
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The terms 𝑓𝑖(ƞ), 𝛩𝑖(ƞ) when 𝑖 > 2 are too large 

that is mentioned graphically. The solution of this 

equation, when 𝑝 → 1, will be as follows: 

𝑓(ƞ) = 𝑓0(ƞ) + 𝑓1(ƞ) + 𝑓2(ƞ) + 𝑓3(ƞ) + ⋯  

= ∑ 𝑓𝑖(ƞ)

𝑁

𝑖=0

    
(46)  

𝜃(ƞ) = 𝜃0(ƞ) + 𝜃1(ƞ) + 𝜃2(ƞ) + 𝜃3(ƞ) + ⋯  

= ∑ 𝜃𝑖(ƞ)

𝑁

𝑖=0

 

(47)  

5. Conclusions 

In this paper, Runge-Kutta and HPM Method is 
applied to solve the problem of the 
magnetohydrodynamic squeezing flow of 
nanofluid between parallel plate. The effects of 
active parameters such as squeeze number, 
nanoparticle volume fraction are investigated. 
To verify the present analytical solution, we 
compared our results with results given by using 
Runge-Kutta. They are in an excellent agreement 
as they have been demonstrated in Table 2 and. 
Table 3. 

Figure 2 shows the effect of increasing the 
squeeze number 𝑆 on the profiles of the velocity 
the latter increasing to the movable plate is in the 
middle of the initial distance between the plates, 
then it decreases slightly and tends towards zero 
when the two plates are glued together, and we 
also observe that the speed decreases with 
increasing values of 𝑆.   
It can easily be seen in Figure 3 that the value of 
the temperature near the bottom surface of the 
plate decreases steadily with the increase of the 
value of 𝑆, and that as we move away from the 
lower surface of the plate, this value increases. 
Figure 5 shows the effect of increasing the 
volume fraction on the velocity profile which 
increases to the moving plate in the middle of the 
initial distance between the plates, then decreases 
slightly and tends to zero when the two plates are 
glued together, and we also observe that the speed 
decreases with increasing values of 𝜑. 

Figure 4 shows the effect of increasing the 
volume fraction on the temperature profile Given 
the previous temperature curve, there is practically 
no change in the temperature profile when 𝜑 
varies, but there is an effect well shown in the 
Table 4, initially present an increase in the values 
of the volume fraction of the nanoparticles 𝜑, the 
temperature decreases, and after a fixed distance 
from the lower surface of the plate, it increases 
slightly.  
From Table 5 it is evident that the coefficient of 
friction and the Nusselt number are proportional to 
𝑆, and it is observed that the parameters 𝐶𝑓

∗ 
increase with increasing values of 𝑆 and 𝑁𝑢

∗ 
decrease as 𝑆 increases. 
In Table 6 it is evident that the coefficient of 
friction and the Nusselt number are inversely 
proportional to , 𝐶𝑓

∗ and 𝑁𝑢
∗ decreases as  

increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 : Comparison between (HMP) and Runge – Kutta for 𝑓′(Ƞ). 

 
Ƞ 

𝑓′(Ƞ) 
 =  0.02,    𝑆 =  1, 𝑁 = 4 

HPM Runge-Kutta 
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0.0 0.0 0.0 
0.2 0.9724211464 0.9724213434 
0.4 1.421472921 1.4214727055 
0.6 1.42147292 1.4214727055 
0.8 0.972421143 0.9724213434 
1.0 0.0 0.0 

 

 

Table 3 : Comparison between (HMP) and Runge – Kutta for 𝜃′(Ƞ). 

 

Ƞ 
𝜃′(Ƞ) 

 =  0.02,    𝑆 =  1, 𝑁 = 4 
HPM Runge - Kutta  

0.0 1.0 1.0 
0.2 0.8129480713 0.8129480503 
0.4 0.6076612514 0.6076612254 
0.6 0.3923387482 0.3923387745 
0.8 0.1870519301 0.1870519496 
1.0 0.0 0.0 

 

 

Figure 2 : velocity profile for different squeeze number values (𝑆). 

 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2020.15.22 A. El Harfouf, A. Wakif S. Hayani Mounir

E-ISSN: 2224-3461 190 Volume 15, 2020



 

Figure 3 : temperature profile for different squeeze number values (𝑆). 

 

        

Figure 4 : temperature profile for different volume fraction values (). 
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Figure 5 : velocity profile for different volume fraction values (). 

 

 

 

 

 

 

 

Table 4 : Temperature value for different values of . 

 
 

ƞ 

𝑁 =  3,  𝑆 =  1 

 =  0.00  =  0.01  =  0.02  =  0.03  =  0.04 
 

 =  0.05 
 

𝛩 𝛩 𝛩 𝛩 𝛩 𝛩 

0 1 1 1 1 1 1 
0.1 0.9089796135 0.9086112279 0.9079192365 0.9082580644 0.9075939228 0.9072813605 
0.2 0.815073728 0.8135108681 0.8124090419 0.8129481537 0.8118921319 0.8113961267 
0.3 0.7137466214 0.7131637223 0.7120736244 0.7126065942 0.7115633264 0.7110743294 
0.4 0.6083624809 0.6080035292 0.6073333522 0.6076608342 0.6070201245 0.6067202682 
0.5 0.5000000001 0.5000000001 0.4999999997 0.5000000004 0.4999999996 0.4999999996 
0.6 0.3916375189 0.391996471 0.3926666473 0.3923391662 0.3929798746 0.3932797318 
0.7 0.2862533788 0.2868362781 0.2879263752 0.2873934062 0.2884366725 0.2889256704 
0.8 0.1859012994 0.1864891321 0.187590958 0.1870518467 0.1881078676 0.1886038731 
0.9 0.0910203874 0.0913887706 0.187590958 0.0917419333 0.0924060768 0.09271864 
1 0 0 0 0 0 0 
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Table 5 : Variation of 𝐶𝑓
∗  and  𝑁𝑢

∗ for different values of S. 
 

 
                         
 
 

 

 

 

 

Table 6 : Variation of 𝐶𝑓
∗  and  𝑁𝑢

∗ for different values of . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑆 
𝑁 =  4,  =  0.02 

𝐶𝑓
∗ 𝑁𝑢

∗ 
0.5 5.61973 0.88071 
1 5.78950 0.84032 

1.5 5.95406 0.80209 
2 6.11394 0.76587 

 
𝑁 =  3 ,    𝑆 =  1 

𝐶𝑓
∗ 𝑁𝑢

∗ 
0 6.34632 0.90222 

0.01 6.04486 0.87082 
0.02 5.78950 0.84032 
0.03 5.57157 0.81069 
0.04 5.38450 0.78190 
0.05 5.22323 0.75391 
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Nomenclature 
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𝑆 Squeeze number 
𝑓 ‘, 𝑓 Dimensionless velocity 

𝜃 Dimensionless temperature 
𝑃 Pressure term 

𝑃𝑟 Prandtl number 
𝑇 Temperature (K) 

𝑥, 𝑦 Cartesian coordinates 
𝑢 Velocity component in x 

direction (m/s) 
𝑣  Velocity component in y 

direction (m/s) 
𝑁𝑢 Nusselt number 
𝐶𝑓 Skin fraction coefficient 
𝑘 Thermal conductivity 

𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 Dimensionless constants 
 

Greek symbols 

 

 

 Rate of squeezing 
 Dimensionless variable 
𝜑 Solid volume fraction 
𝜌 Density 
 Dynamic viscosity 
ʋ Kinematic viscosity 

 

Subscripts 

 

 

𝑛𝑓 Nanofluid 
𝑠 Nano-solid-particles 
𝑓 Base fluid 
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